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Abstract – Multipath signals occur in many sonar, radar, and 

communication applications.  It is, of course, generally desirable 
to eliminate these unwanted signals.  Traditional array signal 
processing techniques often have trouble eliminating these 
signals when only a small number of array elements are available.  
The maximum likelihood method explicitly models multiple 
signals in its mathematical construction.  This feature effectively 
opens up a multidimensional space that allows the desired direct 
path signal to be completely decoupled from the multipath 
signals.  Examples with both narrowband and broadband signals 
are presented. 

INTRODUCTION 

Shallow water sonars can expect to see multipath signals 
that reflect off the sea surface and the sea bottom.  An 
example of at-sea data collected with a broadband synthetic 
aperture sonar is shown in fig. 1.  The faint direct path is 
followed by five undesirable multipath signals.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 1.  Sonar data with direct path followed by five multipath signals. 
 

Cancelling multipath signals is a challenging signal 
processing problem.  This is especially true when only a small 
number of vertical array elements are available, since 
conventional processing results in beam patterns that are too 
large to separate the signals.  This problem requires a more 
powerful approach.   

The maximum likelihood method is uniquely able to solve 
this type of problem because it operates in a multidimensional 
space.  In this space it is possible to completely separate or 
decouple these signals. 

LIKELIHOOD FUNCTION 

The maximum likelihood method is an elegant and powerful 
approach to signal processing problems. It is essentially a 
statistical approach that attempts to fit the data to a parametric 
model.  This model can be written as 

  y = D s + noise                                (1) 

where y is the observed array data, s is the signal, and D is the 
mapping of the data onto the array.  This mapping is also 
known as a steering vector or matrix.  

Given y it is possible to solve for s.  This is an inverse 
problem.  Assuming Gaussian noise, the general solution can 
be obtained using a least-squares method [1]. 

            L = || y − D s ||2                                 (2) 

   The distance measure between the data, y, and the 
parametric model, L, is called the likelihood function.  
Minimizing this function results in the best statistical estimate 
of the model parameters. 

A. One-Signal Model 
It is instructive to first consider the one-signal 

representation of the maximum likelihood method.  The 
steering vector for a uniform linear array with n elements can 
be written as 

( )T)1(1 φφ −= nii eeD                   (3) 

Where the phase angle,φ , is given in terms of the incidence 
angle,ϑ , element separation, a, and wavelength,  λ, as 

)sin(2 ϑ
λ
πφ a= .                               (4) 

This phase angle is the radian measure of the fraction of a 
wavelength extra distance that the signal travels. 

The likelihood function is constructed as the least-squares 
difference between the measured data and the parametric 
model.  

L = || y − D s ||2 

L = ( y† − D† s* ) ( y − D s ) 

L = y† y − y† D s − D† y s* + D†D s* s 
 
Minimizing the likelihood function with respect to s yields  

∂L / ∂s = 0 = − y† D + D†D s* 

or 
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s = D† y / n                                     (5) 
since  

 D†D = n.                                      (6) 

Substituting s in (5) into the likelihood function (2) yields 

L = y† y − || D† y ||2 / n. 

In the minimization process, constants such as y† y and n can 
be ignored.  It is also convenient to flip the overall sign and 
make it a maximization process.  The best estimate of the 
direction parameter is found at the maximum of this function, 
which is simply the periodogram.  

L = || D† y ||2                                   (7) 

Equation (5) indicates that the desired signal, s, can be 
found by steering the array toward the direction of s.  This is 
the classic signal processing result, which is based on a one-
signal model.   

This one-signal approach has well-known problems when 
there is more than one signal.  Essentially, other signals can 
cause interference by “leaking” through the sidelobes or 
mainlobe.  With enough array elements, it is sometimes 
possible to put “nulls” in the direction of the interfering 
sources.   However, this is an inelegant and incorrect use of 
the mathematics.  

B. Multiple Signal Model 
To correctly process multiple signals it is absolutely 

necessary to correctly model the problem.  This means that 
multiple signals need to be explicitly included in the model.  
Equation (1) can be written with multiple signals as 
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where y is the observed array data of length n, s is the signals 
vector of length m, and D is the multiple-signal steering 
matrix. 
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The likelihood function is constructed as in (1) 

L = || y − D s ||2 

Minimizing this function follows the same procedure as in the 
one-signal case.  The important difference is that D†D is now a 
matrix and not a simple scalar.  So, in (5) instead of simply 
dividing by n, it is necessary to multiple by the inverse of D†D. 

s = (D†D)−1 D† y                                 (9) 

Inserting (9) into the likelihood function (2) yields the 
following multiple-source representation. 

L = y† y  −  y† D (D†D)−1 D† y 

Again, it is convenient to drop the constant y† y term and flip 
the sign to make it a maximization problem. 

L =  y† D (D†D) −1 D† y                                (10) 

C. Direction-of-Arrival Estimation 
Equation (10) is often modified to utilize the sample covariance 

matrix, R.  Under the trace operator it is possible to rotate the y† term 
to the end of (10).  The resulting y y† term is the sample covariance 
matrix 

L = tr(L) = tr( D (D†D) −1 D† y y† ) = tr( D (D†D) −1 D† R ) 

This representation of the likelihood function has the advantage of 
allowing many observations to accurately estimate the sample 
covariance matrix.  This is useful in order to accurately estimate the 
direction-of-arrival angles and thus obtain a good representation for 
the steering matrix.   

The angle parameters are found at the maximum of the likelihood 
function.  Typically, a multidimensional parameter search for the 
various direction of arrivals is required to find the maximum of this 
function.  Various techniques can be used to solve this problem.  For 
the sonar multipath problem these angles can be approximated from 
the geometry.  This gives a good initial estimate that can lead to 
quick and accurate convergence of the search technique. 

METRIC SPACE REPRESENTATION 

The likelihood function can be viewed as an inner product.  
Equation (7) can be seen to be the inner product of D† y with 
its conjugate.  Likewise, (10) can also be seen as the inner 
product of the vector D† y with its conjugate. This equation 
also contains the term (D†D)−1 as part of the inner product.  
This term is important and is known as an inner product 
metric.  This mathematical form indicates that the space that 
the D† y vectors exist in is a metric space. 

A. Inner Product Metric    
It is worthwhile to investigate the properties of this metric 

for the two-signal and n-element case.  The metric can be 
constructed from the steering matrix. 
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where 12 φφ −=Δ .  The inverse is then 
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This metric can be seen to be Hermitian.  This is always the case 
since the likelihood function is real valued.   

B. Off-Diagonal Terms 
The off-diagonal terms in (11) are particularly interesting.  These 

terms are a measure of the coupling between the signals.  As the 
angle between the two signals becomes small, the off-diagonal terms 
approach the magnitude of the diagonal terms. 
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Since the off-diagonal terms can grow to be nearly as large as the 
diagonal terms, they clearly cannot be simply ignored.   

It should be noted that there are special cases when the off-
diagonal terms can be safely ignored.  These special cases occur 
when the off-diagonal terms are zero, which occur when  

.,4,2 ππ ±±=Δn  

Because the off-diagonal terms are zero at these values, the problem 
naturally decouples and the signals can be completely separated.  
This is the goal of null steering, which is generally accomplished by 
weighting the steering matrix to produce nulls in the beam pattern in 
the direction of the unwanted signal.  There are limits and 
compromises to null steering, especially when signals are spatially 
close and there are only a small number of array elements. 

It should also be noted that when n is large, the inner product 
metric tends to become diagonally dominant.  In this case the off-
diagonal terms tend to be relatively less important, and the 
conventional signal processing approach starts to assume some 
validity.       

C. Number of Resolvable Signals 
The inner product metric, (D†D)−1, gives a bound on the 

maximum number of signals, m, that can be spatially resolved 
by an array of n sensors.  Essentially, if D†D can be inverted, 
then the metric exists and a solution can be found.  If D†D 
cannot be inverted, then no solution can be found.  Therefore, 
the requirement is for D†D to be full rank.  This may be 
determined from the following equation. 

))(),(min()( †† DrankDrankDDrank =  

     Since D†D has dimension m x m, it needs to be rank m in 
order to be inverted.  By extension both D and D† need to be 
rank m.  This can be seen to be generally true if the number of 
array elements, n, is equal to or greater than m, the number of 
signals.  Otherwise, if n is less than m, then the rank of D and 
D† will be n and D†D will not be full rank.  

This result is not in agreement with eigenvector methods 
such as MUSIC.  These techniques use the sample covariance 
matrix eigenvectors to determine direction-of-arrival estimates.  

Since at least one eigenvector is assigned to span the noise 
subspace, the maximum number of signals that can be 
resolved with MUSIC is only n-1 [2], [3].   

NARROWBAND BEAMFORMER 

Beamforming generally involves steering the array towards 
the signal of interest.  For the narrowband case this steering is 
often done by introducing the phase shifts in (3) to the 
measured signals.  These phase shifts effectively shift the 
signals in time so that all the array elements receive the signal 
from the direction of interest at the same time. 

For multiple sources the steering matrix, D, is the 
fundamentally important object.  The maximum likelihood 
beamformer (9) can be expressed as 
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This representation clearly shows that all the signals are 
decoupled.   

An example of this approach for two narrowband signals is 
shown in Fig. 2.  The first narrowband signal of length 100 
time samples and 10 cycles arrives at a two-element array with 
half-wavelength separation at an angle of +3° at time sample 
50.  A similar second signal arrives at the array at an angle of 
−3° at time sample 100.  Most readers will recognize that 
simple beam steering cannot separate these signals since the 
main beam is ±30° for a two-element array.  However, using 
the maximum likelihood beamformer, which explicitly 
calculates the off-diagonal interference terms, the two signals 
can be completely decoupled or separated. 

 
Fig. 2. Output from simple beam steering and maximum likelihood 
beamformer with 2-element array.  Two overlapping narrowband 
signals arrive at ±3° on a two-element array. 



   Multipath data was collected from a synthetic aperture rail system 
at the NSWC test pool.  A short 20-kHz narrow beam signal was 
projected and two wide beam elements received the signal.  Fig. 3 
shows the data using a traditional beamformer steered toward a 
spherical target on the bottom.  The vertical axis corresponds to the 
ping number along the rail length, and the horizontal axis 
corresponds to the relative time sample. 

The target is clearly seen between time samples 1100 and 1500.  
The multipath signal can also be clearly seen between time samples 
2500 and 2900.  This multipath signal reflects off the water-air 
boundary and arrives at an angle that is within the array’s main beam. 

Fig.  3.  Direct and multipath signals seen using simple beam steering. 
 
The maximum likelihood beamformer output is shown in 

Fig. 4.  This is the beamformer output that is steered toward 
the target, while the second beamformer output is steered 
toward the multipath signal. 

Fig.  4. Only direct path seen using maximum likelihood beamformer. 
 
Ideally, the beamformer should be adaptive in the sense that 

as the range increases the two angles of interest, (1) angle to 
the bottom and (2) angle to the multipath signal, change.  

These angles can be calculated based on the range, depth of 
the sonar, and depth of the bottom. 

BROADBAND BEAMFORMER 

Broadband signals require a somewhat different approach.  
Simple phase shifts work well for narrowband signals since 
they effectively shift the signals in time.  However, the range 
in frequencies in a broadband signal prevents a simple phase 
shift approach from working.   

The solution is to directly use a time-shift operator.  
Assuming the signal can be expressed as eif(t), then multiplying 
the signal by eiτ results in ei(f(t)+τ).  This yields a general time 
shift, τ, to the waveform. 

The steering vector for a broadband signal with n uniformly 
spaced elements can then be written as  

D = ( 1  eiτ  ei2τ  …  ei(n-1)τ )T          

The dimensionless time-shift parameter, τ, is given as 

τ = 2π time shift / sample period. 

This time shift is analogous to the narrowband case, which is a 
radian measure of the fractional extra time.  The broadband 
maximum likelihood beamformer can then be developed using 
the time-shift parameter, τ, instead of the phase angle,φ . 

An example of this approach for two chirp signals is shown 
in Fig. 5.  The first chirp signal of length 100 time samples 
and 10 cycles arrives at a two-element array with half-
wavelength separation at an angle of +3° at time sample 50.  A 
similar second signal arrives at the array at an angle of −3° at 
time sample 100.  Again, simple beam steering cannot 
separate these signals.  However, the maximum likelihood 
beamformer easily separates or decouples the two signals. 

 

 
Fig. 5.  Output from simple beam steering and maximum likelihood 
beamformer with 2-element array.  Two overlapping chirp signals 
arrive at ±3° on a two-element array.  
 



COMMENTS 

Signal separation with only a small number of array 
elements is a challenging problem.  The maximum likelihood 
method offers an elegant solution that is able to completely 
decouple the signals in the spatial domain.  Some insights and 
findings of this approach are given below. 

 Although the maximum likelihood method is well 
known for its high resolution capabilities in 
determining the angles-of-arrival in a multiple signal 
environment, this paper has shown that the maximum 
likelihood method is also capable of completely 
separating multiple signals.  This capability is widely 
unrecognized but can be easily exploited. 

 Signal separation or decoupling occurs naturally in this 
maximum likelihood approach.  This is a direct result 
of explicitly formulating the problem with multiple 
signals.  This multiple dimensional space leads to the 
calculation of the off-diagonal terms.  These terms 
represent the real power of this approach. 

 It is convenient to consider the likelihood function to be 
a distance measure that can be represented as an inner 
product metric space. 

 This maximum likelihood approach indicates that a 
maximum of n signals can be resolved by an n-element 
array.  These signals are resolved in the sense that they 
can in theory and practice be fully decoupled.   

 The steering matrix is not constrained to a uniform 
linear array geometry for this approach to be valid. 

 This maximum likelihood technique to separate signals 
can be used in other signal processing applications, 
such as radar and communications. 
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